III B.Tech II Semester Supplementary Examinations, Nov/Dec 2009 COMPUTER GRAPHICS (Computer Science \& Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Consider a non interlaced raster monitor with a resolution of n by m (m scan lines and n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace time of t horiz and vertical retrace time of tvert. What is the fraction of total refresh time per frame spent in retrace of the electron beam.
(b) Explain the applications for large-screen displays. What graphical output devices support it?
$[12+4]$
2. (a) Explain how the pixel screen positions are stored and retrieved from frame buffer.
(b) What are the steps involved in mid point circle algorithm? [8+8]
3. (a) Describe the transformation which reflects an object about an arbitrary line L.
(b) What is the relationship among rotation $\left(R_{\theta}\right)$, inverse rotation $\left(R_{-\theta}\right)$ and coordinate rotation $\left(R_{\theta}^{1}\right)$.
4. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $R(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping catezory and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
5. If the equation for a plane surface is expressed in the form $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$. Explain the procedure to calculate the parameters A, B, C and D using Cramer's rule if the three successive polygon vertices are given as input.
6. Define tilting as a rotation about the x -axis followed by a rotation about the y -axis. If θ_{x}, θ_{y} are the rotations about x and y -axis.
(a) Find the tilting matrix
(b) Docs the order of performing the rotation matter.
7. (a) If the camera viewing direction is V and the surface normal of plane is N , how to determine whether the surface visible with respect to viewing direction or not.

Code No: P0501/R05

(b) Explain the depth-buffer method for elimination of hidden surfaces.
8. (a) List and explain about the steps of animation.
(b) What are the various types of interpolation used in animation.

