Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Remedial Examination March 2010 Subject code: 131101

Subject Name: Basic Electronics

Date: 09 / 03 / 2010 Time: 3.00 pm – 05.30 pm

Total Marks: 70

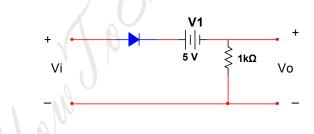
Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (A) What is transition capacitance of a p- n junction diode? For a step graded 07 junction prove that the expression for the transition capacitance of a diode is same as the capacitance of a parallel plate capacitor.
 - (B) How does the designer minimize the percentage variation in I_C , due to variation in I_{CO} and V_{BE} and due to variation in β in transistor amplifier circuit.
- Q.2 (A) A 230 V, 50 Hz AC voltage is applied to the primary of a 5:1 step down 07 transformer which is used in a bridge rectifier having a load resistor of a value 470Ω . Assuming the diodes to be ideal, determine the following
 - (a) DC output voltage
 - (b) DC power deliver to the load
 - (c) Maximum value of output current
 - (d) Average value of output current
 - (e) RMS value of output current
 - (f) Output frequency
 - (g) PIV of diode
 - (B) Define 07
 - (a) Drift velocity of electron
 - (b) Electric field
 - (c) Photovoltaic potential
 - (d) Photo excitation
 - (e) Photo ionization
 - (f) Intensity of electric field
 - (g) Reverse recovery time of diode

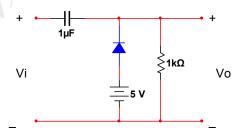
OR

- (B) Define 07
 - (a) Electron volt
 - (b) Potential
 - (c) Critical wavelength for semiconductor
 - (d) Mean life time of carrier
 - (e) Mobility of electron
 - (f) Volt equivalent of temperature
 - (g) Pinch off voltage of FET

Q.3 (A) A bar of silicon 0.2 cm long has a cross sectional area of 9×10^{-8} m², heavily doped with phosphorus. What will be the majority carrier density resulting from doping if the bar is to have resistance of 2 k Ω ? Given for silicon at room temperature:

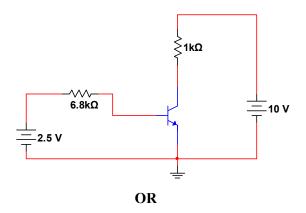

$$\mu_n = 0.14 \text{ m}^2/\text{V-sec}, \ \mu_p = 0.05 \text{ m}^2/\text{V-sec}, \ n_i = 1.5 \times 10^{10} \text{ /cm}^3, \ q = 1.602 \times 10^{-19} \text{ C}$$

- **(B)** Give minimum four comparisons of following semiconductor devices
 - (1) Tunnel diode with conventional diode.
 - (2) LED with conventional diode.
 - (3) LED with photo diode.
- (C) Prove that current density is proportional to product of charge density, mobility 04 of charge and electric field intensity.

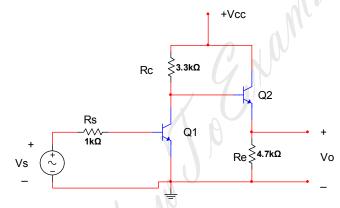

OR

- Q.3 (A) A static resistance of 4 Ω is observed in an ideal germanium diode at room temperature. The current flowing through the diode is 50mA. If the forward biased voltage is 0.2V, volt equivalent temperature is 26mV, calculate:
 - (i) Reverse saturation current
 - (ii) Dynamic resistance of diode
 - **(B)** Draw output waveform of following circuits. Consider input of 20V (peak to peak), 10kHz sine wave and assume ideal diode.

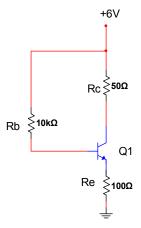
(ii)



- (C) Explain the hall effect in semiconductor. How hall effect is considered in **04** measurement of mobility and conductivity?
- **Q.4** (A) Derive relationship between α_{dc} and β_{dc} of a transistor
 - **(B)** Explain any one circuit which is used to improve the input impedance of the **06** amplifier.


04

06


(C) Determine whether or not the transistor in below circuit is in saturation. Assume 04 $\beta = 50$ and $V_{CE(sat)} = 0.3 \text{V}$, $V_{BE} = 0.7 \text{V}$.

- Q.4 (A) Compare various transistor amplifier configurations.
 - (B) Draw and explain the input and output characteristics of p-n-p silicon transistor in CB configuration. Indicate cut off, saturation and active regions.
 - (C) Two stage amplifier circuit is mentioned below. Calculate overall voltage gain ~ 04 ~ A_v. Take h_{ie} = 2.2K , h_{fe} = 60 , h_{re} = 2.5 \times 10 $^{-4}$, h_{oe} = 2.5 μ A/V, Rc= 3.3 k Ω , Re= 4.7k Ω , Rs= 1 k Ω , Vcc=+12V.

Q.5 (A) For following circuit , calculate the minimum and maximum value of emitter 06 current when β of transistor varies from 75 to 150 . Also calculate the corresponding values of collector to emitter voltage. Take $V_{BE}=0.3V$, Rb= $10k\Omega$, Rc= $50~\Omega$, Re= $100~\Omega$, Vcc= +6V.

(B) Explain with neat circuit diagram, the working of a transformer coupled class A **04** power amplifier.

04

(C) Compare FET with BJT in terms of advantages, disadvantages, construction and operation.

OR

- Q.5 (A) Describe briefly the construction and working of p channel enhancement 06 MOSFET. Draw its characteristic and transfer curve.
 - (B) A class B push pull amplifier supplies power to a resistive load of 15Ω . The output transformer has a turns ratio of 5:1 and efficiency of 78 %. Assume h_{fe} =25 and Vcc =18V. Obtain:
 - (a) Maximum power output
 - (b) Maximum power dissipation in each transistor
 - (c) Maximum base current for each transistor.
 - (C) Explain the signification of following parameters in evaluating the regulation 02 performance of a DC series regulator
 - (a) Input regulation factor (Stability factor) S_V
 - (b) Temperature stability factor (Temperature co efficient) S_T
