GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Regular / Remedial Examination December 2010

Subject code: 131101

Date: 13 /12 /2010 Time: 10.30 am – 01.00 pm

Total Marks: 70

T	4	4 •	
۱n	stru	CT10	nc.
	ou u	CUU	

Seat No.: _____

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Answer the following:	07		
	()	(i) What is semiconductor? Define a hole in semiconductor			
		(ii) State the Pauli exclusion principle			
		(iii) Sketch the piecewise linear characteristics of p-n diode			
		(iv) Define an electron volt (eV)			
		(v) State the mass-action law as an equation and in word.			
		(vi) What is cutin voltage? Write approx. value of cutin voltage for silicon			
		and germanium diode			
		(vii) Write the equation for the volt-ampere characteristic a photo diode			
	(b)	Draw and explain bridge rectifier circuit with capacitorfilter. Draw necessary	07		
	()	waveforms.			
Q.2	(a)	Draw the circuit of CE configuration of transistor. ExplainInput and output	07		
	- ·	characteristics. Derive $\alpha = \beta / \beta + 1$			
	(b)				
		Tunnel diode			
		(ii)Write principle and applications of light emitting diode	03		
	<i>a</i> >	OR	04		
	(b)	, ()			
		determined from Hall effect experiment?			
		(ii) Explain electrical properties of germanium and silicon (conductivity, the	03		
		mobility and the energy gape)			
Q.3	(a)	Draw following diode circuits with input and output Waveforms:			
Q.0	()	(i) Voltage doublers circuit			
		(ii) Positive clipping circuit	03 02		
		(iii) Negative clamper circuit	02		
		()			
	(b)	(i) A $5k\Omega$ load is fed from a bridge rectifier connected with a transformer	04		
		secondary whose primary is connected to 460V, 50 Hz supply. The ratio of			
		number of primary to secondary turns is 2 : 1. Calculate dc load current ,dc			
		load voltage, ripple voltage and PIV rating of diode,			
		(ii) A 100μF capacitor when used as a filter has 12 V dc Across it with a terminal	03		
		load resistor of $2.5k\Omega$. If the rectifier is full wave and supply frequency is 50			
		Hz calculate the percentage of ripple in the output			
		OR			
Q.3	(a)	Explain the h-parameter model of CE amplifier with Bypass resistor R _E and	07		
		derive the expression for A_i , A_v , R_i , R_o			
	(b)	Find h _{re} in terms of the CB h-parameters	07		

- Q.4 (a) What is biasing? Why biasing is required for transistor? List biasing methods for transistor. Draw and explain the circuit of voltage divider biasing
 - (b) Where CC configuration is used? Draw circuit of CC and CB configuration of transistor. Compare current gain ,voltage gain ,input impedance and output impedance of both

OR

- Q.4 (a) A CE amplifier using npn transistor has load resistance RL connected between collector and V_{cc} supply of + 16 V For biasing resistor , R_1 is connected between V_{cc} and base Resistor R_2 = 30 k Ω is connected between base and ground. R_E = 1k Ω . Draw the circuit diagram and calculate the value of R_1 , R_C , stability factor S if V_{BE} = 0.2V, I_{EQ} = 2 mA , V_{CEQ} = 6 V , α = 0.985
 - (b) Design a fixed bias circuit using silicon npn transistor Which has $\beta_{dc} = 150$. The dc biasing point is $V_{CE} = 5V$ And Ic = 5 mA Supply voltage is 10V.Write advantages and disadvantages of fixed bias circuit.
- Q.5 (a) (i) Define the pinch-off voltage Vp .Sketch the depletion region before and after pinch-off.
 - (ii) Sketch the cross section of a P-channel enhancement MOSFET .Show two circuit symbol for MOSFET
 - (b) Draw circuit of an idealized class-B push-pull power amplifier and explain its operation with the help of necessary waveforms.

OR

- Q.5 (a) (i) Compare different types of power amplifier based on conduction angle, 04 position of Q-point, efficiency and distortion
 - (ii) Draw circuit of transistor as a switch 03
 - (b) A MOSFET has a drain- circuit resistance R_d of 100K and operates at 20 kHz. Of the MOSFET parameters are $g_m = 1.6$ mA/V, $r_d = 44$ K, $C_{gs} = 3$ Pf $C_{ds} = 1$ pF, $C_{gd} = 2.8$ pF. Calculate the voltage gain of this device.
