\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-IV Examination June- 2010

Subject code: 141902
Date: 19/06/2010

Subject Name: KINEMATICS OF MACHINE
Time: $10.30 \mathrm{am}-01.00 \mathrm{pm}$

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i) A crank and slotted lever mechanism used in a shaper has a centre distance of 300 mm between the centre of oscillation of the slotted lever and the centre of Rotation of the crank. The radius of the cranks is 120 mm . Find the ratio of the Time of cutting to the time of return stroke.
(ii) Explain the following terms:
(i)Lower pair (ii) Higher pair (iii) Kinematics Chain (iv) Inversion
(b) (i) Write notes on complete and incomplete constraints motion in lower and Higher Pairs, illustrate your answer with neat sketches.
(ii) Sketch and describe the working of whit-worth Quick return motion mechanism.
Q. 2 (a) (i) Explain the following terms:
(ii) A shaft rotating at 200 r.p.m drives another shaft at 300 r.p.m. and transmits 6

Kw Through a belt. The belt is 100 mm wide and 10 mm thick. The distance between theShafts is 4 m . The smaller pulley is 0.5 m in diameter. Calculate the stress in the belt, If it is(1)an open belt drive, and 2.a cross belt drive Take $\mu=0.3$
(b) (i) Explain what do you understand by 'intial tension in a belt'?
(ii) Derive the condition for transmitting the maximum power in a flat belt drive
(iii) Explain the following:
(i)Limiting friction (ii) Angle of friction and (iii)Co-efficient of friction OR
(b) (i) A compressor requiring 90 K.w is to run at about 250 r.p.m. The drive is by Vbelts From an electric motor running at 750 r.p.m. The diameter of the pulley on the compressor shaft must not be greater than 1 metre while the centre distance between The pulleys is limited to 1.75 metre. The belt speed should not exceed $1600 \mathrm{~m} / \mathrm{min}$. Determine the number of V-belts required to transmit the power if each belt Has a cross-sectional area of $375 \mathrm{~mm}^{2}$, density $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and allowable tensile stress Of 2.5 Mpa .The groove angle of the pulley is 35°. The Co-efficient of friction between The belt and pulley is 0.25 . Calculate also the length required of each belt.
(ii) Power is transmitted using a V-belt drive. The included angle of V-groove is 30°. The belt is 20 mm deep and maximum width is 20 mm .If the mass of the belt is 0.35 Kg .per metre length and maximum allowable stress is 1.4 Mpa .Determine the maximum power transmitted when the angle of lap is $140^{\circ} . \mu=0.15$
Q. 3 (a) Two bevel gears A and B having 40 teeth and 30 teeth are rigidly mounted on two CoFind the speed of shaft Y .
(b) A cam with a minimum radius of 25 mm rotating clockwise at a uniform speed is to Be designed to give a roller follower, at the end of a valve rod, motion described below:
(1) To raise the valve through 50 mm during 120° rotation of the cam.
(2) To keep the valve fully raised through next 30°;
(3) To lower the valve during next 60°;and
(4) To keep the valve closed during rest of the revolution i.e. 150°;

The diameter of the roller is 20 mm and the diameter of the cam shaft is 25 mm .Draw the profile of the cam when the line of stroke of the valve rod passes through The axis of the cam shaft. The displacement of the valve while being raised and lowered is to take place with simple harmonic motion.Determine the maximum Acceleration of the valve rod when the cam shaft rotates at 100 r.p.m.Draw The displacement, the velocity and the accelerationdiagram for one complete Revolution of the cam.

OR

Q. 3 (a) Draw a cam profile to drive an oscillating roller follwer to the specifications given below.
(1)Follower to move outwards through an angular displacement of 20° during the first 120 rotation of the cam;
(2)Follower to return to its intial position during next 120° rotation of the cam.
(3)Follower to dwell during the next 120° of cam rotation.

The distance between pivot centre and roller centre $=120 \mathrm{~mm}$; distance between Pivot centre and cam axis $=130 \mathrm{~mm}$; minimum radius of cam $=40 \mathrm{~mm}$;radius of roller $=10 \mathrm{~mm}$ Inward and outward strokes take place with simple harmonic motion.
(b) An epicyclic gear train consists of sun wheels S, a stationary internal gear E and three identical planet wheels P carried on a star-shaped planet carrier C.The size of Different toothed wheels are such that the planet carrier C rotates at $1 / 5^{\text {th }}$ of the speed Of the sunwheel S.The minimum number of teeth on any wheel is 16. The driving Torque On the sun wheel is $100 \mathrm{~N}-\mathrm{M}$.Determine
1.Numbers of teeth on different wheels of the train.
2.Torque necessary to keep the internal gear stationary
Q. 4 (a) The crank and connecting rod of a steam engine are 0.5 and 2 m long respectively. The cranks makes 180 rpm in the clockwise direction. When it has turned 45° from the inner Dead centre determine:
(1)Velocity of Piston.
(2)Angular velocity of connecting rod.
(3)Velocity of point E on the connecting rod 1.5 m from the gudgeon pin.
(4)The velocity of rubbing at the pins of the crank shaft, crank and cross head when the Diameter of their pins are $5 \mathrm{~cm}, 3 \mathrm{~cm}, 6 \mathrm{~cm}$ respectively,
(5) Position and linear velocity of any point G on the connecting rod which has the least Velocity relative to crank shaft.
(b) Derive an expression for the magnitude and direction of Coriolis component of acceleration.

OR

Q. 4 (a) An effort of 1500 N is required to just move a certain body up an inclined plane of
angle 12°,force acting parallel to the plane.If the angle of inclination is increased to 15°,then the effort required is 1720 N.to just move body down . Find the weight of the body and the co-efficient of friction
(b) Derive an expression for the ratio of shafts velocities for Hooke's joint and draw the polar diagram depicting the salient features of driven shaft speed.
Q. 5 (a) A multiple-disc clutch has three disc on the driving shaft and two on the driven Shaft.The outside diameter of the contact surfaces is 240 mm and inside diameter 120 mm . Assuming uniform wear and co-efficient of friction as 0.3 , find the maximum axial intensity of pressure between the discs for transmitting 25 Kw at 1575 rpm .
(b) Describe with a neat sketch a centrifugal clutch and deduce an equation for the total Torque transmitted

OR

Q. 5 (a) Prove that the maximum efficiency of square threaded screw moving in a nut is 1 -sin $\varnothing / 1+\sin \varnothing$, where \varnothing is the friction angle. Neglecting collar friction,
(b) What is the condition for correct steering ? Sketch and show the two main types of steering gears and discuss their relative advantages.

