5-07.

Control System-I

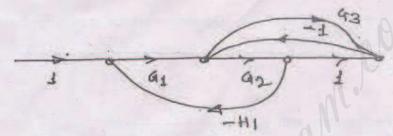
CD-5982

(3 Hours)

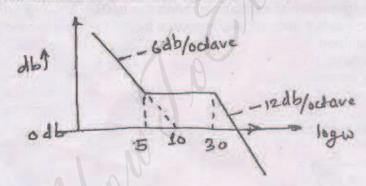
Total Marks 1400

N.B.(1) Question No. 1 is compulsory.

(2) Attempt total five questions.

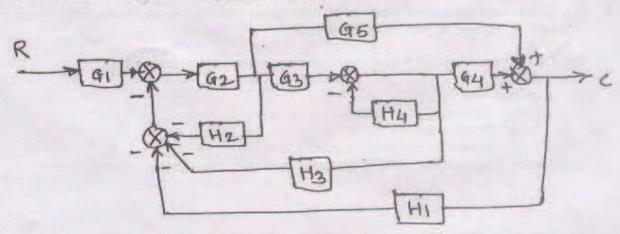

(a) A system is governed by the differential equation —

(a) A system is governed by the differential equation —


$$\frac{d^3y(t)}{dt^3} + \frac{6d^2y(t)}{dt^2} + \frac{11dy(t)}{dt} + 10y(t) = 8u(t)$$

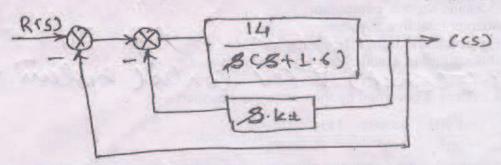
Where y(t) is the output and u(t) is the input of the system; obtain state space representation of the system.

(b) Find the transfer function for the system represented by flow graph.


(c) Obtain the transfer function from the log-magnitude plot shown below :-

(d) Applying Routh's criterion, find range of K for stability of a system, whose characteristic equation is given by $s^3 + 3K s^2 + (K + 2) s + 4 = 0.$

(a) Determine C/R for the following block diagram.


1.0

Derive the transfer function for armature controlled D.C. Servo Motor.

10

(a) The system shown below uses a rate feed back controller. Determine the tachometer constant 10 K₁, so as to obtain the damping ratio of 0.5, calculate corresponding T_p, M_p, W_d and T_s.

- (b) A certain feed back control system is described by the transfer function 10 $G(s) = \frac{K}{s^2 (s+20)(s+30)} \text{ and } H(s) = 1, \text{ Determine steady state error coefficients and also determine the value of K to limit steady state error to 10 units, due to input <math>r(t) = 1 + 10 t + 20 t^2$.
- 4. (a) For the unity feed back system with $G(s) = \frac{K}{(s+1)^3 (s+4)}$.

 $+1)^{3}(s+4)$

(i) Find the range of K for stability

(ii) Find the frequency of oscillations when the system is Marginally stable.

- (b) Show the pole zero location and unit step response for the following second order systems: 10
 - (i) Under damped
 - (ii) Over damped
 - (iii) Critically damped
 - (iv) Undamped.
- 5. (a) Draw the complete root locus for the system represented by open loop transfer function, 10

G(s)H(s) =
$$\frac{K}{(s+2)^3}$$
.

- (b) Draw the complete Nyquist plot for the system whose open loop transfer function is $G(s)H(s) = \frac{K}{s(s+2)(s+10)}$ determine the range of K for which close loop system is stable.
- (a) Explain how the system 'type' can be determined from the log-magnitude curve, hence explain how K_p, K_p and K_a can be determined.
 - (b) Determine the value of K for a unity feed back control system having $G(s) = \frac{K}{s(s+2)(s+10)}$ 10

such that -

- (i) Gain margin = 10 db
- (ii) Phase margin = 50°
- (iii) System is marginally stable.
- 7. (a) Sketch approximate nature of polar plot for the system having transfer function 20

$$G(s)H(s) = \frac{K}{s^2(1+sT_1)}$$
.

- (b) Discuss in detail any one type of damping for a Second Order System.
- (c) Derive expression for peak time-up.
- (d) Explain the co-relation between time and frequency domain specifications.

http://www.howtoexam.com