B.Ed. DEGREE EXAMINATION - JANUARY, 2006.

First Year
(For AY-2004-05 batch candidates)
TEACHING OF MATHEMATICS
Time : 3 hours
Maximum marks : 75

$$
\text { PART A }-(2 \times 15=30 \text { marks })
$$

Answer any TWO questions not exceeding 750 words each.

1. Give the meaning of mathematics and discuss its nature with reference to its growth, application, logic and axioms.
2. Explain how a mathematics teacher can introduce effectively and give illustrations for Number Systems.
3. Explain with examples the construction of triangles, given
(a) three sides (S.S.S)
(b) two sides and included angle (SAS)
(c) two angles and one side (ASA).

$$
\text { PART B }-(5 \times 6=30 \text { marks })
$$

Answer any FIVE questions not exceeding 300 words each.
4. Explain factorization of $a x^{2}+b x+c$ by the method of splitting the middle term.
5. Explain how to solve the system of linear equations $a x+b y=c$ and $d x+e y=f$ through
(a) the method of elimination and
(b) by using determinants.
6. Explain the importance and effectiveness of problem solving approach in teaching mathematics.
7. What is the significant role of evaluation in teaching-learning process of mathematics?
8. Describe with illustration how 'Relations' are represented as
(a) Set of ordered pairs
(b) Graph and
(c) Venn diagram.
9. Write an algorithm and draw the flow cha the following problems
(a) Find the nature of the roots $a x^{2}+b x+c=0$
(b) Given the cost price and selling price the gain/loss.
10. Explain the derivation of the formulae for de the area of a parallelogram, trapezium and triangl 11. Explain how to derive the Trigonometric rat the angles $30^{\circ}, 60^{\circ}$ and 90°.

$$
\text { PART C }-(5 \times 3=15 \text { marks })
$$

Answer ALL questions not exceeding 150 words ϵ
12. Prove that $\log a \times b=\log a+\log b$ for any bas
13. Find the L.C.M and H.C.F. of 180 and 270 th division method.
14. Give a formula for finding Pythagorean t and find three Pythagorean triplets using the form
15. Factorise $x^{3}+6 x^{2}+11 x+6$ using rem theorem.
16. Construct a problem that may be solved usi set identity $n(A \cup B)=n(A)+n(B)-n(A \cap B)$ an its solution.

