3E2072

B. Tech. IIIrd Semester (Main/Back) Examination, Feb. - 2011 Common for Computer Engg. & IT **Electronic Devices & Circuits**

Time: 3 Hours

Maximum Marks: 80

Min. Passing Marks: 24

Instructions to Candidates:

Attempt overall five questions, selecting one question from each unit. Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly.

Unit - I

- What do you understand by clamping circuit with neat diagram explain the 1. action of
 - Positive clamming and i)
 - ii) Negative clamper
 - Describe the Hall effect? What properties of a semiconductor are determined From a Hall effect experiment? (8+8)
- Find the output of a clipper as shown in Fig. (i). Assume that $V_f = 0$ and 2. a) $r_{\rm f} = 0$ for both diode

Explain the significance of Fermi level in intrinsic and extrinsic semiconductor b) energy band distributions? (8+8)

Unit - II

- 3. a) Find out the expression of S, S' and S" for Potential divider biasing circuit (For C.E. configuration)
 - b) Draw and explain Ebers Molls representation of BJT? Also define the voltage and current used in Ebers Molls Equation for PNP transition. (8+8)
- 4. a) Draw the circuit of transistor in common emitter configuration of BJT and sketch the output characteristics indicate the active, saturation and cutoff region. Derive the relationship between α and β for BJT?
 - b) h parameter for CE amplifier has $h_{ie} = 1100\Omega$ $h_{fe} = 50$, $h_{oe} = 25 \times 10^{-6}$ Mho, $h_{re} = 2.5 \times 10^{-4}$ if $R_L = 1K\Omega$ Determine the following parameters
 - i) current gain
 - ii) voltage gain
 - iii) power gain
 - iv) input impedance

(8+8)

Unit - III

- 5. a) Draw the R-C coupled amplifier circuit? Calculate the current gain for low, middle and high frequencies region?
 - b) The amplifier of Fig. (2) Utilizes an N-channel FET for which $V_p = -2V$, $g_{mo} = 1.60 \text{ mA/V}$ and $I_{DSS} = 1.65 \text{mA}$. It is desired to bias the circuit at $I_D = 0.8 \text{ mA}$ using $V_{DD} = 24V$ assume $r_d >> R_d$ Determine
 - V_{GS}
 - ii) g_m
 - iii) R
 - iv) R_d

such that the voltage gain is at least 20 dB with R_s bypassed with a very large capacitance C_s (8+8)

- **6.** a) Explain the working of n-channel MOSFET. What is the difference between enhancement and depletion mode of operation.
 - b) Explain Miller's theorem. Define Boot strapping with its electrical equivalent circuit? (8+8)

Unit - IV

- 7. a) Explain the Brakhausen criterion for sustained oscillations.
 - b) Prove that in a negative Feedback amplifier

$$\left| \frac{dA_F}{A_F} \right| = \frac{1}{|1 + \beta A|} \left| \frac{dA}{A} \right|$$

Where $A_F = gain$ with feedback, A = transfer gain, $\beta = feedback factor$.

(8+8)

- 8. a) Draw the circuit diagram of voltage shunt Feedback amplifier with its necessary effects? What are the difference between voltage shunt and voltage series Feedback amplifier?
 - b) Determine the operating frequency of a Hartley oscillator if $L_1 = 100 \mu H$ $L_2 = 1 \text{ mH}$ mutual inductance between coils $M = 10 \mu H$ and C = 10 PF(8+8)

Unit - V

- 9. a) Draw the circuit of the wein bridge oscillator. Derive the expression for frequency of oscillation for such as oscillator
 - b) The parameter of a crystal oscillator equivalent circuit are $L_s = 0.8$ H, $C_s = .08$ PF $R_s = 5$ K Ω and $C_p = 1.9$ PF Determine the resonance frequencies F_s and F_p (8+8)
- 10. a) With the help of circuit diagram explain the working of "Astable multivibrator" give its waveform what are the basic difference among the three types of multivibrator circuits
 - b) Draw the circuit of a Schmitt Trigger using BJT and explain its working with input voltage versus the output voltage curve. (8+8)