[This question paper contains 6 printed pages]

6134-A

Your Roll No

MCA/IV Sem.

J

60

MCA 401 - COMPILER DESIGN

(OC)

Time 3 hours

Maximum Marks

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt all questions Parts of a question must be unswered together

1 (a) Describe the language denoted by the following regular expression

$$(0/1) * 0(0/1)(0/1)$$
 (2)

- (b) Write the regular expression for the following language
 - (i) All strings of 0's and 1's that do not contain the substring 011 (2)
- (c) Construct a minimum state DFA for the following regular expression

$$(a/b) * a(a/b)$$
 (5)

P.T.O

2

2 (a) Consider the grammar

bexpr → bexpr or bterm/bterm

bterm → bterm and bfactor/bfactor

bfactor → not bfactor/(bexpr)/true/false

- (i) What are terminals, nonterminals and start symbol in the above grammar? (2)
- (11) Construct the paise tree for the sentence not (true or false). (3)
- (III) Is the above grammar ambiguous? Why?
 (2)
- (b) Consider the following grammar

$$E \rightarrow E + T/T$$

 $T \rightarrow TF/F$

 $F \rightarrow F * /a/b$

- (i) Is the above grammar LL(1)? Prove or disprove (2)
- (ii) Construct the SLR parsing table for this grammar (5)

3

(a) The following grammar generates expressions formed by applying an arithmetic operator + to integer and real constants. When two integers are added, the resulting type is integer, otherwise, it is real

$$E \rightarrow E + T/T$$

T → num num/num

Give a syntax directed definition to determine the type of each subexpression (5)

(b) Suppose we have following C declaration

typedef struct {

int a, b,

} node, *head,

node list[100],

head func (int X, node Y)

Write type expressions for the types of list and func (2+3)

(c) Translate the following expression into quadraples and indirect triples

$$a*(b+c)-(a+b+c)*d$$
 (2+2)

P.T O

4

(d) Generate 3-address code for following program -

```
main()
{

int i,

int a[10],

i = 1,

while (i <= 10) {

a[i] = 0, i = i+1,

}
}
(4)
```

4 (a) What is printed by the following program assuming
(a) Call-by-value (b) Call-by-reference, (c) Copyrestore, (d) Call-by-name

```
Program main(input, output),

procedure p(x, y, z),

begin

y = y + 1,

z = z + x,

end,

begin

a = 2,

b = 3,

p(a+b, a, a),

print a,

end,

(4)
```

(b) Construct a DAG for the following basic block

5

$$d = b * c$$

$$c = a + b$$

$$b = b * c$$

$$a = c - d$$
(3)

- (a) What is an activation record? What all field 5 does it contain? Which of these field help to access local and global variables? Explain with (5) example
 - (b) Consider the following 3-address code Partition it into Basic blocks Create a Flow graph and optimize it by removing common sub-expressions

$$(1) i = m-1$$

$$(2) + = n$$

(3)
$$t_1 = 4 * n$$

$$(4) v = a[t_1]$$

$$(5)_{1} = 1 + 1$$

(6)
$$t_2 = 4 * 1$$

$$(7) t_3 = a[t_2]$$

(8) If
$$t_3 \le v \ goto(5)$$

(9)
$$j = j - 1$$

$$(10) t_4 = 4 * j$$

$$(11) t_5 = a[t_4]$$

(12) If
$$t_5 > v \text{ goto}(9)$$

(13) If
$$t > 1$$
 goto(23) (14) $t_6 = 4 * 1$

$$(14) t_6 = 4 * 1$$

$$(15) x = a[t_6]$$

$$(16) t_7 = 4 * 1$$

$$(17) t_g = 4 * j$$

(18)
$$t_9 = a[t_8]$$

P.T.O.

6

(19)
$$a[t_7] = t_9$$

$$(20) \ t_{10} = 4 * 1$$

(21)
$$a[t_{10}] = x$$

(23)
$$t_{11} = 4 * 1$$

(24)
$$x = a[t_{11}]$$

(25)
$$t_{12} = 4 * 1$$

(26)
$$t_{13} = 4 * n$$

$$(27) \ t_{14} = a[t_{13}]$$

$$(28) \ \mathbf{a[t_{12}]} = \mathbf{t_{14}}$$

(29)
$$t_{15} = 4 * n$$

(30)
$$a[t_{15}] = x$$

(3+2+2)

(100)****