This question paper contains 8 printed pages.]

Your Roll No . .

J

5162

B.Sc./B.Sc. (Hons.)/I/NS CH-103 – CHEMISTRY (NC – Admission of 2008 onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No on the top immediately on receipt of this question paper)

(Use separate answer-sheets for Sections A, B and C each)

SECTION – A (Inorganic Chemistry)

Attempt any two questions.

- 1. Explain briefly
 - (1) Despite the fact that the central atoms in NH₃ and H₂O are sp³ hybridized, the HNH bond angle is 107° whereas HOH bond angle 104 5° 2½
 - (11) The electronic configuration $3d^54s^1$ has higher exchange energy than $3d^44s^2$. 21/2

5162 1 P.T.O.

	(111)	The dipole moment value of NH ₃ molecule	
		is higher than that of NF ₃ , though the N - H	
		bond is less polar than the N - F bond	21/2
	(ıv)	BaO is 2000 times more soluble than MgO, but BaSO ₄ is insoluble, however MgSO ₄ is	
		quite soluble in water	21/2
	(v)	s-orbitals are spherically symmetrical	21/2
2	(a)	Write the time-independent Schrodinger wave equation for hydrogen atom and explain the physical significance of Ψ^2 .	2 ¹ /2
	(b)	Sketch the radial probability curve for 3s, 3p and 3d orbitals on the same set of axis.	2 ½
	(c)	What is the concept of multiplicity rule? How do you justify the Hund's rule of maximum multiplicity?	2 ½
	(d)	Justify which of the following orbitals are not feasible:	
		1p, 5f, 3g, 2d	21/2
	(e)	Draw the shapes 3d orbitals, indicating the sign of wave function	2 ½
3.	(a)	Draw the molecular orbital energy level diagrams for C_2 and O_2 molecules and explain the following	
		(1) Oxygen is paramagnetic	
		(11) C ₂ molecule is diamagnetic	
		(111) The bond order in C ₂ is 2	
		(1v) The bond order in O_2^+ is 2.5	4

5162 2

- (b) (i) State giving a reason in each case, which cation will exert a greater polarizing power in the following cases:
 - (I) Na^+ or Mg^{2+}
 - (II) Cu^{2+} or Ca^{2+}
 - (11) Of the following pairs of anions, which one will be more easily deformed? Give reasons
 - (I) Cl^- or I^-
 - (II) O^{2-} or F^-

4

- (c) Explain
 - (1) I₃ and XeF₂ molecules have linear geometry. 1½
 - (11) Consider the hypothetical reaction

$$Na(s) + Cl_2(g) \rightarrow NaCl_2(s)$$

Where the products contain Na^{2+} ions and Cl^- ions Estimate the heat of formation of $NaCl_2$ from the following data by the use of Born-Haber cycle and comment upon its stability.

Heat of atomization of Na(s) = + 109 kJmol⁻¹ Heat of atomization of $Cl_2(g) = + 247$ kJmol⁻¹ Electron gain enthalpy for Cl(g) = -349 kJmol⁻¹

Lattice enthalpy of NaC $l_2(s) = -2155 \text{ kJmol}^{-1}$

The first and second ionization enthalpies of Na(g) are +494 and +4561 kJ mol⁻¹ respectively.

3

5162 3 P.T.O.

SECTION - B

(Organic Chemistry)

Attempt any two questions

4. Explain why?

- (1) α-Bromopropionic acid is a stronger acid than β-Bromopropionic acid
- (11) Anılıne is a weaker base than methyl-amine
- (111) CH₃CH₂ is more stable than CH₃CH₃CH₃
- (iv) Isobutyl group is of higher priority than n-butyl group
- (v) Glycerol has higher boiling point than n-propanol $2\frac{1}{2} \times 5$
- 5 · (a) Giving reasons arrange the following .

 CH₃CH₂COOH(I), HOCH₂CH₂COOH(II),

 ClCH₂CH₂COOH(III), CH₃CH(Cl)COOH(IV)

 and BrCH₂CH₂COOH(V) in increasing order of acid strength.
 - (b) Which of the following possesses aromaticity? 2

5162 4

(c) Assign R or S configuration to any **two** of the following:

- (d) How many stereoisomers are possible for 2,
 3 dichlorobutane 7 Write their configurations 2½
- 6 (a) Distinguish between the following terms:
 - (1) Homolytic and Heterolytic cleavage

COOH

(11) Enantiomers and diastereomers 3

(b) (1)
$$H_2N$$
 C H CH_2OH H HOH_2C $COOH$

What is the relationship between (i) and (ii) Enantiomers or two orientations of the same molecule?

2

5162 5 P.T.O.

(c) Giving reasons, arrange the following carbocations in increasing order of stability:

$$CH_3^{\oplus}$$
, CH_3 - CH_2^{\oplus} , CH_3 - CH_3
and

(d) Assign E or Z configuration to the following

$$H_2N$$
 $C = C$
 CHO
 Br
 $C = C$
 CH_2CI
 CH_3
 BrH_2C
 $C = C$
 CI

5 1/2

2

2

2

SECTION - C

Attempt any two questions

Use of Scientific Calculators is allowed

- 7. (a) In which of the following systems is the energy of the system conserved in every process (i) a closed system, (ii) an open system, (iii) an isolated system, (iv) a system enclosed in adiabatic walls? Justify your choice 2½
 - (b) Does the first law of thermodynamics impose any restrictions on the direction of a process? Explain
 - (c) Why is $\Delta U = 0$ for every cyclic process ? 2
 - (d) Can the vapourisation of water at 100 °C and 1 atm pressure be treated as a reversible process? Explain

5162 6

- (e) How does the addition of excess NH₄Cl in addition to NH₄OH prevent the precipitation of Zinc hydroxide in a mixture of Al and Zn salt?
- (f) The indicator range of Thymol blue is 1 2 to 2 8 Will it be a suitable indicator for a strong acid-strong base titration? Explain 2

2

4

4

- 8 (a) Calculate the work done when 1 mole of a monatomic ideal gas undergoes a reversible adiabatic expansion from 2 L to 4 L at 25 °C. Molar constant volume heat capacity of the gas is 1.5 R. What would be the change in temperature if the expansion was against a constant external pressure of latm?
 - (b) Derive the following equations:
 - (1) $\Delta S = R \ln V_2/V_1$ for an ideal gas at constant temperature $\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$
 - (c) Given the following ΔH°_{298} values in kcal/mol.

$$Fe_{2}O_{3}(s) + 3C(s) \rightarrow 2 Fe(s) + 3 CO(g) \qquad \Delta H = 117$$

$$FeO(s) + C(s) \rightarrow Fe(s) + CO(g) \qquad \Delta H = 37$$

$$2CO(g) + O_{2}(g) \rightarrow 2CO_{2}(g) \qquad \Delta H = -135$$

$$C(s) + O_{2}(g) \rightarrow CO_{2}(g) \qquad \Delta H = -94$$

Find the heats of formation of $FeO_{(s)}$ and $Fe_2O_3(s)$ 4½

5162 7 P.T.O.

9 (a) Show that the pH of a solution of a salt of strong acid and weak base is given by

$$pH = -0.5 [log K_w - log K_h + log C]$$

4

- (b) Estimate the pH of a solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate in a 1 L standard flask and making it up to the mark Dissociation constant of the acid is 1 8 × 10⁻⁵
- (c) Calculate the molar solubility of PbI_2 (1) in water and (11) in 0.200 \mathring{M} sodium iodide solution K_{sp} of $PbI_2 = 7.9 \times 10^{-9}$. Ignore the amount of iodide coming from PbI_2 in the sodium iodide solution.

5162 8 4,000