This question paper contains 4+2 printed pages]

Your Roll No.

5186

B.Sc. Prog./II

J

. MA-201—MATHEMATICS—I

(Calculus and Geometry)

(For Physical Sciences/Applied Sciences)

(Admissions of 2008 and onwards)

Time 3 House

Maximum Marks , 112

(Write your Roll No on the top immediately on receipt of this question paper)

All questions are compulsory

Attempt any two parts from each question except

Question No 5 In questions No 5 attempt any one

Section I

1 (a) (i) Represent geometrically the set

$$\{z \mid |z - i| > |z + i|\}$$
 5½

(ii) Find centre and radius of the circle whose equation is

$$|z-i|=4|z+i|$$

Check if the origin lies inside the circle 7
P.T O

(b) (i) Solve the equation

$$x^4 - 2x^3 - 21x^2 - 22x + 40 = 0$$
,
the sum of the two roots being equal to
sum of the other two 7

(u) If α , β and γ are the roots of the equation $x^3 - \alpha x^2 + bx - c = 0, \text{ find the value of } \sum_{n=0}^{\infty} \frac{\alpha^2}{n}.$

(c) (i) Prove that:

$$(1+\iota)^n + (1-\iota)^n = 2^{n/2+1}\cos(n\pi/4)$$
 5½

(u) Solve the equation

$$z^6 - z^5 + z^4 - z^3 + z^2 - z + 1 = 0$$

Section II

2 (a) State intermediate value theorem and show
that if the continuity hypothesis of the
theorem is dropped, then its conclusion may
fail to hold
10

(b) Show that the function f defined as

$$f(x) = |x| + |x - 1|$$

is continuous at x = 0, and x = 1 But is not derivable at these points

- (c) Define uniform continuity of a function. Give an example of a continuous function which is not uniformly continuous
- 3 (a) Find the asymptotes of the curve

1

$$x^3 + 2x^2y + xy^2 - x^2 - xy + 2 = 0. 10$$

(b) (i) Determine the position and nature of double points on the curve

$$x^3 + x^2 + y^2 - x - 4y + 3 = 0$$

(ii) Trace the polar curve

$$r = a(1 + \cos \theta)$$
 5+5

PTO

(c) Trace the curve

10

10

$$y(1 - x^2) = x^2$$

4 (a) Obtain the reduction formula for

$$\int \sin^n x \ dx,$$

n being a positive integer and hence evaluate

$$\int_{0}^{\pi/2} \sin^6 x \, dx \tag{10}$$

- (b) Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum Also find the
 volume of the solid obtained by rotating this
 area about x-axis
- (c) Find the arc length of the cycloid

 $x = a(\theta + \sin \theta), y = a(1 + \cos \theta), -\pi \le \theta \le \pi$

5186

Section III

5 Identify and sketch the graph of the conic

$$4x^2 - 4xy + y^2 - 8x - 6y + 5 = 0$$

by rotating co-ordinate axes

14

Or

Find the nature of the following conic and trace it completely giving essential details

$$x^2 + xy + y^2 - x + 4y + 3 = 0 14$$

- 6 (a) A particle moves along the curve $x=t^3+1$, $y=t^2$, z=2t+5, where t is the time Find the component of the velocity and acceleration at t=1 in the direction $\hat{i}+\hat{j}+3\hat{k}$ 6%
 - (b) Show that

$$\nabla^2 \left(\frac{1}{r} \right) = 0 6\frac{1}{2}$$

(6) 5186

(c) For what value of the component a will the vector

$$\vec{A} = (axy - z^3)\hat{i} + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$$

have its curl identically equal to zero 9 61/2

