Optional — FUNCTIONAL ANALYSIS

(For those who joined in July 2003 and after)

Time: Three hours

Maximum: 100 marks

SECTION A — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions.

1. If M be a linear subspace of a normed linear space N, and f be a functional defined on M, then prove that f can be extended to a functional f_0 defined on the whole space N such that $||f_0|| = ||f||$.

- 2. State and prove the Uniform Boundedness theorem.
- 3. If M is closed linear subspace of a Hilbert space H; x is a vector not in M and d is the distance from x to M, then prove that there exists a unique vector y_0 in M such that $||x y_0|| = d$.
- 4. If N_1 and N_2 are normal operators on H with the property that either commutes with the adjacent of the other, then prove that N_{India} and N_{India} and N_{India} are normal.

- If I is a proper closed two-sided ideal in A, then prove that the quotient algebra A/I is a Banach Algebra. If f_1 and f_2 are multiplicative functionals on A
- with the same null space M, then prove that $f_1 = f_2$. Explain the following:
 - (a) Conjugate space of X(b) Dual basis Completion of the n/s X
 - (d) Adjoint of F.

8.

in B'.

- For a compact operator A on a Banach space X prove that Z(A-I) and Z(A'-I) are equal where A'is the transpose of A.
 - SECTION B $(3 \times 20 = 60 \text{ marks})$ Answer any THREE questions.
 - All questions carry equal marks. Let M be a closed linear subspace of a normed
- linear space N. Show that N/M is also a normed linear space and that if N is a Banach space then so is N/M. 10. If B and B' are Banach space and if T is a continuous linear transformation B onto B', then prove that the image of each open sphere centred on the origin in B contains an open sphere centred on the origin

- (b) State and prove the Bessel's inequality. 12. Prove that $r(x) = \lim_{n \to \infty} x^n \Big|_{x=0}^{1/n}$ where r(x) is the
 - spectral radius of an element x in the general Banach algebra A. State and prove the Gelfand-Neumark theorem.

11. (a) Show that l_2 is an inner product space.

- 14. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. For $y \in L^q([a, b])$. Let
- $f_{y} \in (L^{p}([a,b]))$ be defined by

$$f_{y}(x) = \int_{a}^{b} x y dm, x \in L^{p}([a, b]).$$

Let $F: L^q([a,b]) \rightarrow (L^p([a,b]))$ be given by $F(y) = f_y$, $y \in L^q[[a,b]]$. Then prove that F is a linear isometry of $L^{q}([a,b])$ into $(L^{p}([a,b]))$ and also F is onto if and only if $1 \le p < \infty$.

6562/KAA