Register Number:
(b) Find the equation of the plane which passes through the point $(-1,3,2)$ and perpendicular to the two planes

$$
\begin{array}{r}
x+2 y+2 z=5 \\
3 x+3 y+2 z=8
\end{array}
$$

8. (a) Find the image of the point $(2,3,4)$ in the plane

$$
x-2 y+5 z=6
$$

(b) Show that the lines:

$$
\begin{aligned}
\frac{x+1}{2} & =\frac{y+1}{3} \\
\text { and } \frac{x-1}{5} & =\frac{y+1}{4} \\
8 & =\frac{z-3}{-7}
\end{aligned}
$$

are coplanar. Find also, the equation of the plane containing them.
9. (a) Find the equation of the sphere passing through the four points $(2,3,1),(5,-1,2),(2,5,3)$ and (4, 3, -1)

Name of the Candidate:
B.Sc. DEGREE EXAMINATION, 2008 (MATHEMATICS)

$$
\begin{gathered}
\text { (SECOND YEAR) } \\
(\text { PART }- \text { III }-\mathbf{A}-\text { MAIN }) \\
(\text { PAPER }- \text { III })
\end{gathered}
$$

650. ALGEBRA AND SOLID GEOMETRY

(Including Lateral Entry)

December]
[Time : 3 Hours

Maximum : 100 Marks

Answer any FIVE questions. All questions carry equal marks.

$$
(5 \times 20=100)
$$

1. (a) Find the equation with rational co-efficients whose roots are

$$
4 \sqrt{3}, 5+2 \sqrt{-1}
$$

(b) Solve the equation

$$
3 x^{3}-4 x^{2}+x+88=0
$$

which has a root $2-\sqrt{-7}$.
Turn over
(c) Solve the equation

$$
x^{3}-12 x^{2}+39 x-28=0
$$

whose roots are in arithematical progression.
2. (a) If α, β, γ are the roots of the equation

$$
x^{3}+p x^{2}+q x+r=0
$$

find the equation whose roots are

$$
\alpha+\beta, \beta+\gamma, \gamma+\alpha
$$

(b) Solve the reciprocal equation
$6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$.
3. (a) State and prove Lagrange's theorem and deduce Fermat's theorem.
(b) Show that $n^{5}-n$ is divisible by 30 .
4. (a) Prove that a non void subset H of a group G is a subgroup, if and only if,

$$
a, b \in H \Rightarrow b^{-1} \in H
$$

(b) State and prove the fundamental theorem of group homomorphisms.
5. (a) Show that the set of all complex numbers of the form $a+i b$ where a and b are integers is a commutative ring.
(b) Show that a finite integral domain is a field.
6. (a) If A and B are normal subgroup of a group G, prove that $A \cap B$ is also a normal subgroup of G.
(b) If H and K are finite-subgroups of a group G of orders $\mathrm{O}(\mathrm{H})$ and $\mathrm{O}(\mathrm{K})$ respectively, prove that

$$
\mathrm{O}(\mathrm{HK})=\begin{aligned}
& \mathrm{O}(\mathrm{H})-\mathrm{O}(\mathrm{~K}) \\
& \mathrm{O}(\mathrm{H} \cap \mathrm{~K})
\end{aligned}
$$

(c) Show that every field is an integral domain.
7. (a) Show that $(1,-1,1),(5,-5,4)$, $(5,0,8)$ and $(1,4,5)$ are the vertices of a rhombus.
(b) Show that the plane

$$
2 x-y-2 z=16
$$

touches the sphere
$x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$
and find the point of contact.
10. (a) Show that

$$
\begin{aligned}
x^{2}-2 y^{2}+3 z^{2}-4 x y & +5 y z-6 z x+8 x \\
& -19 y-2 z=20
\end{aligned}
$$

represents a cone and find its vertex.
(a) Find the equation of the right circular one whose vertex is at the origin, whose axis is the line

$$
\frac{x}{1}=\frac{y}{2}=\frac{z}{3}
$$

and which has a vertical angle of 60°.
(b) Show that the plane

$$
2 x-y-2 z=16
$$

touches the sphere
$x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$
and find the point of contact.
10. (a) Show that

$$
\begin{array}{r}
x^{2}-2 y^{2}+3 z^{2}-4 x y+5 y z-6 z x+8 x \\
-19 y-2 z=20
\end{array}
$$

represents a cone and find its vertex.
(a) Find the equation of the right circular one whose vertex is at the origin, whose axis is the line

$$
\frac{x}{1}=\frac{y}{2}=\frac{z}{3}
$$

and which has a vertical angle of 60°.

